. NO-RL79 337 PRMILIS"C MVSIS OF ﬁLBORITIﬂS Fﬂ '-C”LETE v
nouzns U> INDIANA UNIV AT BLOONINGTOM DEPT OF
OMPUTER SCIENCE J FRANCO OCT 86 AFOSR-TR-87-8406
UNCLASSIFIED ﬁOSR-OO-.I?Q F/G 972

Mo gt

N

PR

Cab gy b

.

™
‘o Ve

.

-
0.-8
2 Nz
==

SEEE

t E FEEFEIT

E o

= |

) &

4
.

14

.

MICROCOPY RESOLUTION TEST CHART

I STANDARDS ~ (940

NAT NNAL B RF AL

PP

AD-A179 537

JIG FILE Copy

Unclassified

SECUMITY CLASSIFICATION OF THIS PAGE

REPQRT ROCUMENTATION PAGE

AT CURITY CLASSIFIC 1b. RESTRICTIVE MARKINGS
Unr5ss fFied
2e. SECURITY CLASSIFICATION 4 3. DISTRIBUTION/AVAILABILITY OF REPORT
d Approved for public release; distribution
25, DECLASSIFICATION/DOWNGR CHEDULE \ unlimited
e PEAFORMING ORGANIZATION REPORT NUMBR W 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFOSR-TR- 87-0
6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL |7s. NAME OF MONITORING ORGANIZATION
(I applicable) N
Indiana University AFOSR/NM
6c. ADORESS (City. State and ZIP Code, 7o0. ADDRESS (City. State and ZIP Code)
Department of Computer Science Bldg 410
Bloomington, IN 47405 Bolling AFB DC 20332-6448
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PAOCUREMENT INSTRUMENT IDENTIFICATION NUMBER
OAGANIZATION 11f applicable)
AFOSR NM AFOSR-84-0372
t'la orﬂy (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT
Bolling AFB DC 20332-6448 ELEMENT NO. NO. NO. NO.
1Y TITLE /Include Security Classification) PrObabiliStiC 6]]02F 230" ‘3
F.'%RSONAL THOR(S)
roressor J. tranco
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPQRT (Yr, Mo.. Day) 15. PAGE COUNT
Annual FROM _10/g5 TO _g/36 October 86 2
16. SUPPLEMENTARY NOTATION
1?7 COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROuUP T Su8 GR
+

19. ABSTRACT Continue on reverse i necessary and (dentify dy block number:

she probabilistic performance of a number of algorithms for the NP-complete satisfiability
roblem (SAT) has been investigated analytically and experimentally using a fixed-clause-
ength model generating n clauses of k -~ 3 literals taken from r variables as well as a
andom-clause-length model generating n clauses containing each of r variables independently
ith probability p. In the case of the random-clause-length model one polynomial time algori
as been shown to find a solution to a random instance I of SAT with probability approaching
as in and r get large when a solution exists for I. In the case of the fixed-clause-
ength model, we have discovered an algorithm which almost always finds a solution to random J]
atisfiable instances of SAT with k = 3. We have also shown that none of a wide class
f algorithms can verify unsatisfiability in polynomial time almost always.

20. OISTRIBUTION/AVAILABILITY OF AB8STRACT 21 ABSTRACT SECURITY CLASSIFICATION

Y

UNCLASSIFIED/UNLIMITED . SAME AS RPT _ OTIC USERS Unclas<iled

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER
tinciude Area Code:

aptain Thomas (202) 767-5026

EOITION OF 1 JAN 7318 OBSOLETE.

22¢ OFFICE SYMBOL

AFOSR-TR- 87-0406

UNITED STATES AIR FORCE
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
BUILDING 410, BOLLING AFB, D.C. 20332

Grant No. AFOSR 84-0372
ANNUAL SCIENTIFIC REPORT
October 1985 to September 1986

Probabilistic Analysis of Algorithms for NP-complete Probiems

John Franco, Principal Investigator

Department of Computer Science
Indiana University
Bloomsngton, Indiana 47405

87 4

N '\'._- o \-'\t\-‘\f‘ MO LR RIS AR LSOO e T fa T R Ry
= N 5 L)

Y \\.\\ oA \.\\\\

TABLE OF CONTENTS

. Research Objective

. Analytic Tools

. Finding Solutions to Instances of SAT

. Verifying Unsatisfiability

. Hamiltonian Circuits
. Summary of New Results
. Publications During the Last Year

. References

Accesion For

NTIS CRA&I [V,
DTIC T1aAB 12
Unannounced 13
Justiticat:an

——r S Tesemea,
r. ———— —— g e e, e e o

ety
By

Dist ibution I o
Availabitity Codes
e
&l aodfor

Spucial

LT PO

———

Abstract

The probabilistic performance of a number of algorithms for the NP-complete
Satisfiability Problem (SAT) has bcen investigated analytically and experimentally
using a fixed-clause-length model generating n clauses of k > 3 literals taken from
r variables as well as a random-clause-length model generating n clauses containing
each of r variables independently with probability p. In the case of the random-
clause-length model one polynomial time algorithm has been shown to find a so-
lution to a random instance I of SAT with probability approaching 1 as n and »
get large when a solution exists for I. In the case of the fixed-clause-length model.
we have discovered an algorithm which almost always finds a solution to random,
satisfiable instances of SAT with k = 3. We have also shown that none of a wide
class of algorithms can verify unsatisfiability in polynomial time almost always.

We have also studied the algorithm of Angluin and Valiant for the NP-complete
Hamiltonian Circuit problem. It was shown by them that a hamiltonian circuit can
be found in random graphs which are hamiltonian with probability tending to 1
as graph size tends to infinity. We have found that their algorithm almost never
finds hamiltonian circuits in k-regular graphs which are hamiltonian. On the other
hand, we have discovered an algorithm which often finds hamiltonian circuits in
such graphs.

N OEN -, N 4‘ N, ¢'¢ J' -,- ! «r a y f-ﬂ.-f’ J‘"(.' - a A PR A N SO 4- N OGNV e S L P

»

' 1. Research Objective
|
|

The goal of this research is to develop and analyze algorithms which can, in some
practical sense, solve NP-complete problems quickly. NP-complete problems appear '
in many disciplines such as Cryptology, Operations Research, Artificial Intelligence
and Computer System Design. NP-complete problems are the “hardest” of a class of
problems known as NP. Associated with cach NP problem we consider is an infinite
set of instances. Instances may take the form of graphs, logic expressions, sets or
many other structures depending on the problem. Each instance has a size denoted
by n. Although the size of an instance / may be formally defined as the number
of bits needed to efficiently encode I, for our purposes, we may regard the size of
I to be the number of distinct objects in I. So, for example, a graph containing E
edges and @ vertices has size n = £ + Q. Associated with each instance [is a set 3
of variables, a set of values that can be assigned to each variable and a constraint

function Uy that maps value assignments to variables to {¢rue, false}. For example,

if I is a graph with Q vertices we might associate Q — 1 variables which take edge)
labels as values and a constraint function which has value true if and only if the :
edge set corresponding to the assignment given to the variables is a spanning tree
of I. An assignment ¢ such that U (¢) = true is a solution to I. An algorithm solves
I if it determines whether or not a solution exists for [I.

- =

A A -

A problem in NP is said to be solved efficiently if there 1s an algorithm which
solves every instance of the problem in time bounded by a polynomial in n. Un-
fortunately, there is no known computational scheme for efficiently solving any
NP-complete problem and it is considered highly unlikely that one wili be found

(see [2] and [12]). Thus, every known method for solving an NP-complete problem .

P cannot find the solution to some instances of P in a reasonable amount of time. :
Furthermore, there is little hope that even an effective randomized algorithm (see :
[13], [22] and [23]) will be found for any NP-complete problem since, as is well 3
known, this would imply an unlikely collapse of the polynomial hierarchy. However, ‘
if a method M can be found to efficiently find solutions to all but a few instances .

of P then M might be a practical method for solving P. We are iooking for suck

(M, P) pairs. :

\

N

1 ;

o

O TR S T A A A 9 it P Vo G A S S R A TR A, WS W Ny AT "\'"-;'-:;

. {..‘_

2. Analytic Tools

We use probability theory to measure success in meeting our goal. A distribution
D is assigned to the set of all possible instances of P of size n and we prove one of
three kinds of results for a given algorithm M:

a. M finds a solution to an instance of P chosen randomly according to D in time
bounded by a polynomial in n with probability greater than some positive
constant k as n gets large. Then we say M efficiently solves P in bounded
probability under D.

b. M finds a solution to an instance of P chosen randomly according to IJ in time
bounded by a polynomial in n with probability approaching 1 as n gets large
(we will say “with probability tending to 1”). Then we say M efficiently solves
P in probability under D.

c. M solves all of a large sample of instances of P chosen randomly according to
D in average time that is bounded by a polynomial in n as n gets large. Then
we say that M solves P in polynomial average time.

Results of type (a) are weaker than results of type (b) and results of type (b)
are weaker than results of type (c). It is often the case that we can prove a weaker
result but not a stronger one for a particular (M, P) pair under D. Although a
type (c) result is the most desirable type of result, even a type (b) result will allow
us to conclude that M, in some practical sense (at least under D), efficiently solves
P. A result of type (a) cannot always allow us to make the same conclusion since
x may be very small (say .01). However, many algorithms we consider proceed by
assigning values to variables in some order which is decided during computation
and assignments are never undone either totally or partially. TkLese algorithms
either continue until all variables are assigned values (in which case a solution has
been obtained) or they stop prematurely because they discover that every set of
assignments of values to unassigned variabies cannot possibly lead to a solution (in
which case it cannot be determined whether or not a solution exists). A property of
these algorithms is that the next variable to be assigned a value is chosen randomly
from a large group of possibilities. Thus, repeated rums of such algorithms will
execute differently and possibly give diffcrent results. If the probability that a
run finds a solution is bounded from below by a constant and ail runs execute
independently then only a constant number of runs would be necessary for aus to

<
-

o or b el elt gl kg st afadidkadadia gy ais et ac et ab it b tah At gt tigt at bt et bt Lk et bl edatdhat bk et ol it A ek S ttalded Aok daldid Al

solve a random instance of P with probability arbitrarily close to I (this can be

strengthened to a type (b) result if the number of runs is allowed to grow slightly :
with n). Unfortunately, it is not the case that all runs execute independently.

However, for the algorithms we cconsider, the dependence is very weak and, according

to the results of our experiments, we are justified in supposing that a small number

of repeated runs of M will allow us to solve P with probability tending to 1. Thus, 1
a'result of type (a) seems to translate to a result of type (b) for the kinds of

algorithms we consider. When referring to results of either type (a), (b) or (c) we

will sometimes use the phrase “probabilistically efficient”.

Others have taken this approach for specific NP-complete problems. Algo-
rithms which are probabilistically efficient have been found for the Hamiltonian

Circuit problem [1] and [19], the Planar Traveling Salesman problem (18], the Pro-
cessor Scheduling problem (7], the Bin Packing problem [17] and other NP-complete
problems.
P
{
]
E
»
L)
R
W
3 .

SRR R R AR Sl SRRl SR TR At A AL AR RSN GASRRE L G by N R TN AT AT AT AT e T .
PN A N AP A N NINEMNIN N NN, " v : .

3. Finding Solutions to Instances of SAT: Old and New Results

The problem we are primarily interested in is the Satisfiability problem (SAT). An
instance I of SAT is a Boolean expression in Conjunctive Normal Form (CNF). A
CNF expression is a conjunction (logical and) of disjunctions (logical or) of literals
(a literal is a Boolean variable or its complement). A disjunction is also called
a clause. A solution to I, if one exists, is a truth assignment to the variables
associated with literals in I which cause I to have value true. The problem is to
find a solution to I, if one exists, or to determine that no solution to I exists.
An instance of SAT which has a solution is said to be satisfiable; otherwise the
instance is said to be unsatisfiable. SAT is the first problem found to be NP-
complete and is closely related to problems in Artificial Intelligence particularly in
the areas of Theorem Proving and Vision Analysis. Also, any problem in NP can
easily be transformed to SAT and transformations from SAT to other NP-complete
problems are often straightforward. SAT is, therefore, one of the more important
NP-complete problems.

Some favorable probabilistic results for algorithms which solve SAT have al-
ready been obtained. Let V = {v;,vs3,...,v,} be a set of r Boolean variables. A
random clause contains each possible literal vy, ..., v, v}, ... v} with probability p
independently of the occurrence of any other literal. A fized length random clause
of length k contains k distinct literals which are equally likely to be any k-subset of
. 2r literals associated with the variables of V such that no two literals are associated
4 with the same variable.

The random clause model is the distribution on instances of SAT where each
instance has n independently selected random clauses. In (3], [14], [15], [20] and
r [21] the average running time of several algorithms for SAT is obtained under the)
random clause modcl. The conditions under which at least one algorithm runs in
polynomial time on the average are as follows: '

Ve L% N
(LX) 8

P AT BN
Uit]

. R R S O N S S C A R N S S L SR R T 0 6 TR TS TS I T TR AT L P P
WA I e R T e R RN AN

1) limpsoo rp =0, n > rin(2)/ - In({r + 1)p).

2) limyoorp =00, liMraoop =0, n > In(2)e??/ep.

3) limpoop =0, np<y/ ﬂ'l'(-ﬂ, ¢ constant.

4) lim, o 1/p = polynomial(r), np < r°?, c constant.

5) n <cln(r), c constant

But, in [9] we showed that, under the random clause model, a randomly chosen
truth assignment to V nearly always is a solution to an instance of SAT when
a) p 2 In(n)/r, and an instance of SAT nearly always has a clause containing no
literals (such an instance is unsatisfiable) when b) p < In(n)/(2r). We also showed
that, when ¢) In(n)/(2r) < p < ln(n)/r and nla(n) < a\/rIn(r), where e is any
constant greater than zcro, a random instance of SAT has no variable which appears
in more than one clause with probability tending to 1. Since a clause containing nc
variables is not satisfiable and since solutions to instances containing variables that
appear in at most one clause are trivial to find, we may conciude that instances of
SAT generated under either a), b) or ¢) may be trivially soived.

These results are significant because conditions a), b) and ¢) subsume con-
ditions 1) — 5) above. Thus, our results indicate that the previous resuits on
algorithms for SAT are favorable, not because the algorithms analyzed have some
special property which make them fast in the probabilistic sense, but because the
assumed distribution generates instances which have the property that almost any
simple-minded algorithm can solve them efficiently almost all the time.

Let I be an instance of SAT and let ¢ denote a clause of . If v is a literal in /
then we use comp(v) to denote the complement of v. In order to express aigorithms
for SAT succinctly we regard clauses of I to be subsets of literals {v,, ..., vr, v}, ..., v}
and I to be a collection of n of these subsets. In [16] we considered the following
algorithm for SAT:

an

11

e p e e s A A" ta " At et e h e ta hes b emene.s e e aeaens e a e mm e e
AR L R S G A 1§ S T W W G A S B A R R R R S A S L A (LS R A R SR AN

v gat moh tat Bat nal @b at'ad'ed'ad stz tadiad'at nd ol ad’s ' s 2% % 82 2'2 32 8': B L -

Al(l):

While I £ and Veel, c#£ ¢
If there is a single-literal clause {u} € [then v «— u
Else choose a literal v randomly from L
I — {c—{comp(v)}:c€Tand véc}
L —~ L~ {v,comp(v)}

If I = ¢ then return(“satisfiable™)

Else return(“give up”)

Ay is very fast as it never assigns more than one value to cach vanable o |

Implicit in A, is the assignment of value ¢rue to literal v and the assignment of
false to comp(v). Therefore A, implicitly finds a solution if it does not “give up”.

Recently we have obtained the resnlt that algorithm A, efficiently solves SAT
(does not “give up”) in probability under the random clause model when p =
cln(n)/r, 5 <c < 1,and limy p oo n'~¢/r — 0 [16}. In [16] it is also shown that
instances generated according to the random clause model have no solution with
probability tending to 1 when p = cln(n)/r,.5 < ¢ < l,and limp paoo ! ~¢/r — oc.
Note that A; has good probabilistic performance even when variables appear in
O(nln(n)/r) clauses on the average.

These results are significant for two reasons. First, they say that A; almost
always finds a solution to a random instance of SAT (generated under the random
clause model) when one exists. Second, they demonstrate the power of the following
line in Ay:

If there is a single-literal clause {u} € I then v — u

We have shown that A; performs very poorly {almost always gives up) withont

this line when In(n)/(2r) < p < ln(n)/r K
q

)

6 ‘.

»

- 4‘.33 (.‘vl‘._-fm' AL h"\i&i\"i\"\"ﬁ'\. O S A A S R Sy AR KA G R RN R T

Other favorable results have been obtained under a fixed ciause length distri-
bution. The fized clause length model is the distribution on instances of SAT where
each instance has n independently selected fized length random clauses of k literals.
The probability that a random instance of SAT under the fixed clause length model
is satisfiable tends to O as n and r tend to infinity if n/r > —1n(2)/In(1 — 27%).
! Furthermore, the average number of solutions to a random instance of SAT under
this model is exponential in r if n/r < —In{2)/In(1 — 2%). The probability that a
random instance of SAT under the fixed clause length model has at least ope solu-
' tion tends to 1 if n/r < ~f(k)/In(1 — 27*) where f(k) is monotonically increasing

with k toward an asymptotic value no greater than In(2). Because the character of
instances changes so abruptly here, we refer to the point n/r = — f(kj/inii - 27%)
as the flip point. In these studies & is assumed to be independent of n and r. Thus
it appears that the case where lim, ,_.o n/r = a, where a is any constant greater
i than zero, is particularly important when considering the fixed length clause modeli.

A number of algorithms have been analyzed under the fixed clause iength
model. It can be shown that a randomiy guessed truth assignment wili almost
never be a solution to a random instance of SAT under the fixed length clause
model if limp y oo n/r = a where @ > 0. However, according to results in [11].
an algorithm based on the pure literal rule (a component of the well known Davis-
Putnam procedure [8]) efficiently solves SAT in probability under the fixed length
clause model when limg s .00 n/r < 1. Recently we have shown that this algorithm
can solve SAT efficiently in probability under the fixed clause length model only if
the limiting ratio n/r obeys n/r < 1/(1 — ke=*™/27). This bound is close to I for
even moderately large k; for example, if k¥ = 6 then n/r < 1.07. These results are
even .nore interesting in light of the observation that stripping each clause of ail
its literals except for two results in an instance of 2-SAT which can be solved n
polynomial time [12] and which almost always has a solution when n/r <1 Since
a solution to such an instance of 2-SAT is also a solution to the stripped instan: .
of SAT from which it was created and since almost all instances of 2-SAT na.
solutions when n/r < 1, the trivial method of stripping literals performs avoat a-
well under the fixed length clause modei as the algorithm based on the pun Liter
rule. The trivial method of stripping literals and the algorithm basec on the rurn
literal rule are both superior to an algorithm of {4] which partitions clauses of
given instance [intc groups so that no two clauses of different groups share liter-

T

. . Ny . ate- o v SA g i i
VAR P W N TN N Yaaliad' e b\ S - - . <

associated with the same vanable, soives SAT for each group and cembines the
solutions to each group to get the solution to [

But, there are a number of algorithms that have been shown to perform much
better probabilistically under the fixed length clause model. In {3] we showed that
A, efficiently solves SAT in bounded probability under the fixed length clause model

when
k=t (k- 1*7?
lim n/r < — ()

n,r—oo k k-2

Notice that the expression on the right side of the inequality is ~O(1/k)/ In(i - 2-%)
if k is large.

This result is significant for two rcasons. First, we cannot make the claim
that A; almost always finds a solution to a random instance of SAT when one
exists, as we could in the case of the random clause model, since there is a large
gap between the flip point (n/r = ~O(1)/In(1 - 27%)) and the point where 4,
begins to work well probabilistically (n/r = —O(1/k})/In(1 — 27%)) due to the 1/k
factor which appears in the latter term. Furthermore, for that range of n/r over
which A4, is probabilistically efficient, it is only able to find solutions efficiently with
bounded probability whereas A; finds solutions efficiently in probability (almost all
instances) under the random clause length model. Thus, we see that, in some sense.
the fixed clause length model generates harder instances than the random clause
length model (at lcast as far as Ay is concerned) and the results based on the latter
distribution do not map precisely to the same kind of results based on the former.

We also studied the following generalization of A4:

A1) :
Repeat
Let ¢ be a smallest clause in
Choose u randomly from ¢
Remove from [all clauses containing u
Remove from [all occurrences of comp(u)
Until 7 is empty or there exist two complementary unit clauses in [/
If Iis empty Then return (“satisfiable”)

Otherwise return (“give up”}

In [5] we showed that A; efficiently solves SAT in bounded probability under
the fixed length clause model when

1.54 » 2k-1 <k -1

k-3
<k<
k—2) for4 < k<40

n.lranoo n/r < k+1

and efficiently solves SAT in probability under the fixed length clause model when

lim n/r<

n,r— 0o k

0.92 « 2k—1 (lc -1

k-2
<k< .)
k-—2) for4 < k<40 ;

These results are significant for three reasons. First, A, efficiently solves SAT in h
probability (almost always) over about the same range of n/r that 4, efficiently
solves SAT in bounded probability. Second, the range of n/r over which Aj is
probabilistically efficient is only slightly greater than the range of n/r over which
A; is probabilistically efficient. Thus, although A3 performs much better than A, byt
probabilistically, there is still a wide gap between the flip point and the point at

which A3 begins to perform well. Third, and most important, A; and A, are vastly R
superior in probabilistic performance compared to algorithms that rely on certain .
greedy heuristics to select the next variable to assign a value to. An example of .
a greedy heuristic is “select the variable v for which the difference between the :
number of occurrences of the literal v and the literal v' in I is greatest and assign 5
variable v the value which satisfies most clauses”. However, as we will see below, ::
greedy heuristics added to A, and A3 improve the performance of those algorithms ’
significantly, especially for the case k = 3.
o‘
In the case k = 3 (CNF expressions with three literals per clause are instances of :

the 3-Satisfiability problem which is also NP-complete) we have shown in [6] that the
maximum occurring literal selection heuristic (if there are no single-literal clauses e
in I, select a variable randomly and assign it the value which satifies most clauses)

used with A, efficiently solves SAT in bounded probability under the fixed length ¢
clause model wlen limg, y oo n/r < 2.9. In the case k = 3, A; efficiently solves SA'Y :
in bounded probability when limp , .00 n/r < 2.66 This may be compared with the ;:

flip point (n/r = 4). '
N

S

b
H

)

? N

°
R

N e e e e et et e\ L
S A p.‘. e N AN

Fuln.: ilﬂ””lul!l!lulﬂlﬂ"IUIEIEIEIUIUlUlllﬂIﬂlll!lIlllEllllUlu U llaf Sl Lok B AR (o8 B 2% (ad Lob tof Rod iaf it dia Sk A a f et £ AL A KA Aat fa

From our analysis in [5] and {6] we have devised the following new algorithm
: for SAT:
Aa(I) .
Repeat
If there is a single-literal clause {{/} in I Then u —{
Otherwise u «— [* such that {* € L and foralll € L w(l*) > w(!)
Remove from [all clauses containing u
Removce from [all occurrences of comp(u)
L — L—{u,comp(u)}
Until I is empty or there exist two complementary Unit Clauses in |
If I is empty Then return (“satisfiable”)
Otherwise return (“give up”)

where w(l), the weight of literal /, is determined as follows:

Let ¢ be a clause in I and let pu;(c) be a weighting function mapping clauses
to integers. Let us say that pj;(c) is the weight of clause ¢ at the end of the
Jt* iteration of As([). Initially po(c) = 1 for every clause ¢ € I. The clause
weighting function is updated as follows: if ! is the literal chosen on the j**
iteration, 1¥;(l) is the total weight of clauses containing ! at the start of the
j*P iteration (these clauses will be removed) and Ny(l) is the number of clauses
containing comp(l) at the start of the j*» iteration (one literal will be removed
from each of these clauses) then p,(c) = pj—1(c) + W;(!)/N;(l) if ¢ contains
comp(l), p;(c) = 0 if ¢ contains { and puj;(c) = p;—1(c) otherwise. The literal
weighting function is
w(l) = Wy()/N;(1)

According to our experiments, Ay solves SAT efficiently in bounded probability
under the fixed length clause model when limg r.0o n/r < 4.

The significance of this result is that A; appears to efficiently solve almost
all instances of 3-SAT. We hope to prove this result analytically and devise an
extension to A3 which will provide similar performance for any fixed value of k.

10

o T A AT W 0 L L M S L A S G ERA A NS SRR TR SR LS G TR AR S M AR N A S Bt

. Seopaa'B e’ 2% othia’h 2 't abi alf o%i <P ofia' AL ™) % a t at gt e tie e d'2 8 0. 0’208 0'¢ 322 nt'a A8 ¢'a 1 2. 82 402 B2 4'2a 2'a R's bia d'ndia 2% 802 din &

4. Verifying Unsatisfiability

Although much of our work has been directed toward finding algorithms that obtain
solutions when they exist, we are also interested in algorithms that, in probability,
efficiently verify the unsatisfiability of instances of SAT that are unsatisfiable. The
problem of verifying unsatisfiability seems to be harder than the problem of finding
a solution when one exists since verification seems to require examination of many
truth assignments to make sure that none is a satisfying assignment. Algorithm A,
below represents a class of algorithms for verifying unsatisfiability.

A;(I) :
If there is a clause in I which has value false Then returp “unsatisfiable”
If all clauses in I are true Then return “satisfiable”
Select an unassigned variable v from V
Let I; be the result on I of assigning true to v
Let I3 be the result on I of assigning false to v
If Aq(51) and A4(]2) return “unsatisfiable” Then return “unsatisfiable”
Else return “satisfiable”

The line “Select an unassigned...” allows A4 to be any one of a wide class of)
algorithms for verifying unsatisfiability by allowing any variable selection heuristic. X
Furthermore, important algorithms for verifying unsatisfiability such as the Davis-

Putnam procedure have the form of A,.

Unfortunately, we have found that, regardless of the variable selection heuris- ¥
tic used, A4 requires exponential time, almost always, to verify unsatisfiability if ‘
instances are generated according to the fixed clause length model with the ratic
of n to r fixed (recall that this is the most important relationship between n and

Py St gy

r). Although pessimistic, this result is important because it shows us where not to
look for algorithms that verify unsatisfiability efficiently in probability. :

1

N A ISR W N N Y " e ISR . o *
AR R G S A L B T A, G TR Y Eh £0 G0 A o A L R A PR AL DAY

a] Roalhs by JB R R R

5. Hamiltonian Circuits

Given a graph G = (V, E) with |V| = n, a bamiltonian circuit in G is an ordering
< v1,v3,...,vp > of vertices in V such that, forall 1 £ ¢ < j < n, v; # v; and
< v;, V41 > is an edge in the edge set E and edge < v,,v; > is in E. A graph
that has a hamiltonian circuit is called hamiltonian. If a graph G is hamiltonian.
we see from the definition of hamiltonian circuit that there is a way in G to traverse
a sequence of adjacent edges in such a way that every vertex in G is visited once
and only once. The problem of finding a hamiltonian circuit in a graph (if one
exists) is a very important NP-complete problem that has received much study. In
{1] an efficient algorithm for the Hamiltonian Circuit problem was introduced and it
was shown that this algorithm almost always finds a hamiltonian circuit in random
graphs that are hamiltonian. This result has been regarded as evidence that the
Hamiltonian Circuit problem is tractable in some probabilistic sense.

The result of [1] is based on the following graph distribution (for undirected
graphs): a random undirected graph has n vertices and each pair of vertices is con-
nected by an edge with probability p independently of any other edge connections.
This distribution is analogous to the random clause distribution for SAT. According
to a result of [1] there is an efficient algorithm which finds a hamiltonian circuit
in a random undirected graph in probability if p > (1 + ¢)In(n)/n where € is a
small constant. It had alrcady been known that no hamiltonian circuit exists in a
random graph with probability tending to 1 if p < In(n)/n. Thus, the algorithm
of {1} finds a hamiltonian circuit in nearly all graphs that have one. Compare this
result with our result that solutions to instances of SAT generated according to the
random clause model can be found efficiently in probability when p > In(n)/r {p,
r and n are the parameters of the random clause model - not the random graph
model), random instances of SAT have no solution with probability tending to 1
if p < In(n)/(2r), and if p = cIn(n)/r, .5 < ¢ < 1, solutions to random instances
of SAT are found efficiently in probability if limg,s—vco n' ~¢/r — 0 and no solution
exists if limp pyoo !¢ /r — o0.

12

- , T e A A AT At et e A
!'1¢\ Ny ‘\)".\'.\.."‘.\ N "'*\aﬁ_-\,_l_-\.h R q-\‘-_, ".._-!' AN D PRS0 . l" LR AN
_ A A A" N A A X

E
Rara v 4y . ’ v ».

As previously mentioned we have found that algorithms which work well prob-
abilistically under the random clause model do not necessarily work well under the
fixed clause length model. The reason appears to be that the random clause modei
generates lots of “easy” instances. We illustrate this as follows: Let I(n,r, p) (or
I when the parameters are obvious) refer to a random instance of SAT generated
according to the random clause model with parameters n, r and p. If p is pro-
portional to 1/r the average number of literals per clause is constant. But, with
probability tending to 1 there is a zero literal clause in I(n,r, O(1/r)). Zero literal
clauses cause I to be unsatisfiable. As p is increased to, say, O(InIn(n)/r) the aver-
age number of literals per clause is now tending to infinity as r tends to infinity. A
huge number of literals per clause makes the job of finding a truth assignment that
satisfies lots of clauses much easier since more opportunites for doing so arise. But,
as those opportunities increase I remains unsatisfiable because there is still a zero
literal clause in I with probability tending to 1. If we increase p to a value close
to In(n)/(2r) the opportunities for developing a truth assignment satisfying lots of
clauses become overwhelming but with probability tending to 1 there exists a zero
literal clause which keeps I unsatisfiable. Finally, if p is increased beyond the value
which forces a zero literal clause to be in I with probability tending to 1, there is
nothing to prevent I from being satisfiable and the huge average number of literals
per clause allows finding a satisfying truth assignment easily.

This phenomenon does not occur with the fixed clause length model for SAT.
The reason is that there is no possibility of zero literal clauses so instances are
satisfiable even when the number of literals per clause is constant. But, if the
number of literals per clause is constant there are relatively few opportunities for
developing a truth assignment which satisfies all clauses; thus, it is hard to do so
(instances are “hard”). The analog of the fixed clause length model for SAT is the
k-regular graph model for (undirected) graphs. (A k-regular graph is an undirected
graph such that every vertex has degree k. The k-regular graph model assigns equal
probability to every n vertex k-regular graph.)

13

From the above discussion it scems that the satisfiable instances generated un-
der the random clause model are easier to solve than many satisfiable instances
generated under the fixed clause length model. The result is that some algorithms
which work well probabilistically under the random clause model do not work well
under the fixed clause length model. We have verified this for some algorithms for
SAT. Since the fixed clause length and random clause models for SAT are analo-
gous to the k-regular and random graph models, respectively, we decided to check
whether the sensitivity of probabilistic performance to instance distribution ob-
served for SAT holds for the Hamiltonian Circuit problem. Sc far our results are
as expected: the algorithm of [1] performs pooriy on instances of k-regular graphs
which have hamiltonian circuits. In fact, the algorithm of [1] almost never succeeds
in finding a hamiltonian circuit when one exists. Thus, the question of whether
the Hamiltoniap Circuit problem is tractable in some probabilistic sense must be
reopened and reexamined. We have begun to do this by experimenting with other
algorithms for the Hamiltonian Circuit problem. One of these performs much better
than the algorithm of 1] but does not find hamiltonian circuits often enough to get
excited over. A complete report on this matter will be prepared after more work
can be accomplished.

6. Summary of New Results

We have obtained the following results during the past year:

1. Algorithm A, efficiently solves SAT (does not “give up”} in probability under
the random clause model when p = cin(n)/r, 5 <c < 1,andlimy,0o n*~¢/r =
0[16]. In [16] it is also shown that instances generated according to the random
clause model have no solution with probability tending to ! when p = clIn(n)/r.
S<e<l,and imp g n! “/r = 2.

These results are significant for two reasons. First, they say that 4, almost
always finds a solution to a random instance of SAT (generated under the ran-
dom clause model) when one exists. Second, they demonstrate the power of
the following line in A;:

If there is a single-literal clause {u} € J then v ~— u

We have shown that A4, performs very poorly (almost always gives up) without
this line when In(n)/(2r) < p < In(n)/r.

2. From our analysis in [5] and [6] we have devised a new algorithm for SAT :
which we called A3 in section 3. According to our experiments, A3 solves SAT
efficiently in bounded probability under the fixed length ciause modei when
limy peoo n/r < 4.)

The significance of this result is that A3 appears to efliciently solve aimost ali
instances of 3-SAT that are satisfiable.

- e, Ve

3. We have shown that any algorithm for verifying unsatisfiability of the kind
represented by A4 requires exponential time with probability tending to 1 under
the fixed clause length model if the ratio of n to r is fixed.

This result is significant because 1t applies to a wide class of algorithms.)

- . - . - .- . - - .. - - - . '.l - - . L] - -
R N U I R UL 0% Oy L L S S A LS R G S TR LG G (SR SRR S N

......... e S
LSS SO SN OO \"-.’\' Ly RS

o«

4. We have found that the algorithm of (I} for finding Hamiitomian Circuits i

random graphs performs poorly on hamiltonian k-reguiar graphs. We have
also found that another aigorithm for obtaining hamiltonian circuits performs
much bettcr than the algorithm of {1j on k-regular graphs but not well encugh
to find hamiltonian circuits even most of the time.

From these results we see that an NP-compiete probiem that had been regarded
as tractable in the probabilistic sense may not be tractable after all. If not, the
reason may be that the distnibution chosen in {1] for analysis 1s faulty in that
it allows too many “easy” instances to be generated. These results point cut
the need for further research aimed at being able to distinguish distribntions
that generate many “easy” instances from those that generate mostly “hard”
instances.

7. Publications During the Last Year

a. Chao, M. T. and Franco, J., “Probabilistic analysis of two beuristics for the

3-Satisfiability problem,” SIAM J. Comput.15 (1986), pp. 1106-1118.

. Chao, M. T. and Franco, J., “Probabilistic analysis of a generalization of the

Unit Clause Literal Scfection Heuristic for the k-Satisfiability problem,” sub-
mitted to SIAM J. Comput.

. E. Choukmane and J. Franco, “An approximation algorithm for the Maximum

Independent Set problem,” to appear in Networks.

. Franco, J., “On the probabilistic performance of algorithms for the Satisfiability

problem,” Information Processing Letters 23 (1986), pp. 103-106

. Franco. J., “Probabilistic analysis of a class of algorithms for verifying unsat

isfiability,” in preparation.

. Franco, J. and Ho, Y, “Probainlistic analysis of a heuristic for the satishatalin

problem,” submitted to Miscrete Appiscd Math.

;
AR

T AR A T AT T TN A A L
A W, W,) W,

-
-

P
-, -

. . " o« e >

NI I AN

* Sl

References

1. Anpgluin, D. and Valiant, L., “Fast Probabilistic Algorithms for Hamiltonian
Circuits and Matchings,” Proc. 9th Annual ACM Symposium on Theory of
Compuling (1977) pp. 30-41.

2. Berman, L. and lartmanis, J.. “Ob Isomorpnisms and Density of NP and Other

Complete Sets,” SIAM J. Comput. 6 (1977)

3. Brown, C. and Purdom, P. W, “Average Time Analysis of Backtracking,”
SIAM J. Comput. 10 (1981), pp. 583-593.

4. Chao, M. T., “Probabilistic Analysis and Performance Measurement of Al-
gorithms for the Satisfiability Problem,” Ph.D. thesis, Case Western Rescrve
University, Cleveland, Ohio (1984).

Chao, M. T. and Franco, J., “Probabilistic Analysis of a Generalization of the

w

Unit Clause Literal Selection Heuristic for the k-Satisfiability Probiem,” Tech-
nical Report No. 165, Department of Computer Science, Indiana University

(1085).

6. Chao, M. T. and Franco, J., “Probabilistic Analysis of two Heuristics for the
3-Satisfiability Problem,” SIAM J. Comput.15 (1986}, pp. 1106-1118

-1

Coffman, E. G, Frederickson, G N and Lucker, G S., “Probabilistic Anaj. i~
of the LPT Processor Scheduling Heuristic,” in Deterministic and Stochastie

Seheduling,) Rewdel (1982) pp 319 331

-
g a4

4

X) “..;..\"\‘J. W N I R ‘_--'-. CA Rl e e e “a AT AF Y ‘)\'- ".- ‘.- i ‘.n"_-“‘a\-n*\'-\.-“.-\‘\\.-_-;"-"_-.‘.."..\.-‘ ...\;."'.\:,'-;.‘. .-

AT LWL L TR LY TR VW W

8. Davis, M. and Putnam, H., “A Computing Procedure for Quantification The-
ory,” JACM T (1960), pp. 201--215.

9. Franco, J., “On the Probabilistic Performance of Algorithms for the Satisfia-
bility Preblem.” Information Frocessing Letters 23 (1986), pp. 103-106.

1C. Franco, J. and Paull, M., “Probabilistic Analysis of the Davis Putnam Proce-
dure for Solving The Satisfiability Problem,” Discrete Applied Math. 5 (1983),
pp. 77-87.

11. Franco, J., “Probabilistic Analysis of the Pure Literal Heuristic for the Satis-
fiability Problem,” Annals of Operations Research 1 (1984), pp. 273-289.

12. Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the
Theory of NP-completeness, Freeman (1979).

13. Gill, J., “Computational Complexity of Probabilistic Turing Machines,” Si1.\f
J. Comput. 6 (1977).

14. Goldberg, A., “Average Case Compiexity of the Satisfiability Problem.” Froc.
4th Annual Workshop on Automated Deduction (1979), pp. 1-6.

15. Goldberg, A., Purdom, P. W. and Brown, C. A., “Average Time Analysis
of Simplified Davis-Putnam Procedures,” Information Processing lLelters 15

(1982), pp. 72-75.

16. Ho, Y. and Franco, J., “Probabilistic apalysis of a heuristic for the Satisfiability

Problem,” submitted to Discrete Applied Math.

RN Y N
N "'v"“‘ I S A N A Yy

NN R P
N . N T ETEVET LY S P N - -'.-.-".’\ - “.. ST et . N .
'L'&f\':\".\':\'.,4(\':\{\i\{\".\-’.\’.\-’&\{\':\':‘\"AM" A_.&"M’ B SR N UL T AT AR AW R ‘RN M

2374 Annual JEEE Symposium on Foundations of Computer Science {1982},

]
’ 17. Karmarkar, N., “Probabilistic Analysis of Some Bin-Packing Problems,” Proc.
b

pp. 107-111.

18. Karp, R. M., “Probabilistic Analysis of Partitioning Algorithms for the Travel-
ing Salesman Problem in the Plane,” Math. Oper. Res. 2 (1977), pp. 209-224.

19. Karp, R. M., “Probabilistic Analysis of Some Combinatorial Search Problems,”
In: J. F. Traub (ed.), Algorithms and Complezity: New Directions and Recent
Results, Academic Press (1976).

20. Purdom, P. W., “Search Rearrangement Backtracking and Polynomial Average

Time,” Artificial Intelligence 21 (1983), pp. 117-133.

21. Purdom, P. W. and Brown, C. A., “The Pure Literal Rule and Polynomial
Average Time,” SIAM J. Comput. 14 (1985), pp.943-953.

22. Rabin, M. O., “Probabilistic Algorithms,” In: J. F. Traub (ed.), Algorithms
and Complezity: New Directions and Recent Results, Academic Press (1976).

23. Schwartz, J. T., “Fast Probabilistic Algorithms for Verification of Polynomial
Identities,” J.ACM 27 (1980).

19

.'A 2 3. 32 A% _ At %%

.....................

AR N LR PO AL ML N " N0 gla’ 143" pha N g - gh. o alg oAg SN gt)Y 2hg atp ol o* e a 5 26 a%

=N
597
/c

IO AT A W AL A TR A P T T T T T S A N S I SR O TR IR SRE R

AR AN TS v vy

-

- -

-

